Parabolic equations with unbounded lower-order coefficients in Sobolev spaces with mixed norms

نویسندگان

چکیده

We prove the $$L_{p,q}$$ -solvability of parabolic equations in divergence form with full lower-order terms. The coefficients and non-homogeneous terms belong to mixed Lebesgue spaces lowest integrability conditions. In particular, for are not necessarily bounded. study both Dirichlet conormal derivative boundary value problems on irregular domains. also embedding results Sobolev spaces, proof which is independent interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic Equations with Vmo Coefficients in Spaces with Mixed Norms

An Lq(Lp)-theory of divergence and non-divergence form parabolic equations is presented. The main coefficients are supposed to belong to the class V MOx, which, in particular, contains all measurable functions depending only on t. The method of proving simplifies the methods previously used in the case p = q.

متن کامل

Parabolic Equations with Partially Vmo Coefficients and Boundary Value Problems in Sobolev Spaces with Mixed Norms

Second order parabolic equations in Sobolev spaces with mixed norms are studied. The leading coefficients (except a) are measurable in both time and one spatial variable, and VMO in the other spatial variables. The coefficient a is measurable in time and VMO in the spatial variables. The unique solvability of equations in the whole space is applied to solving Dirichlet and oblique derivative pr...

متن کامل

PARABOLIC EQUATIONS WITH MEASURABLE COEFFICIENTS IN Lp-SPACES WITH MIXED NORMS

The unique solvability of parabolic equations in Sobolev spaces with mixed norms is presented. The second order coefficients (except a) are assumed to be only measurable in time and one spatial variable, and VMO in the other spatial variables. The coefficient a is measurable in one spatial variable and VMO in the other variables.

متن کامل

Nonautonomous Kolmogorov Parabolic Equations with Unbounded Coefficients

We study a class of elliptic operators A with unbounded coefficients defined in I × R for some unbounded interval I ⊂ R. We prove that, for any s ∈ I, the Cauchy problem u(s, ·) = f ∈ Cb(R ) for the parabolic equation Dtu = Au admits a unique bounded classical solution u. This allows to associate an evolution family {G(t, s)} with A, in a natural way. We study the main properties of this evolut...

متن کامل

NEUMANN PROBLEM FOR NON-DIVERGENCE ELLIPTIC AND PARABOLIC EQUATIONS WITH BMOx COEFFICIENTS IN WEIGHTED SOBOLEV SPACES

We prove the unique solvability in weighted Sobolev spaces of non-divergence form elliptic and parabolic equations on a half space with the homogeneous Neumann boundary condition. All the leading coefficients are assumed to be only measurable in the time variable and have small mean oscillations in the spatial variables. Our results can be applied to Neumann boundary value problems for stochast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Evolution Equations

سال: 2022

ISSN: ['1424-3199', '1424-3202']

DOI: https://doi.org/10.1007/s00028-022-00761-2